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Abstract 

Surfaces embedded in d Euclidean dimensions with an extrinsic cur- 

vature term are investigated. To one loop order, the effective action 

for metric fluctuations has a Liouville form over both large and short 

distances. At large distances, the Liouville theory is the same as for 

the Nambu model, - 26 - d. At short distances, the Liouville action 

is proportional to 26 - Zd; this produces negative eigenvalues, and so 

instability, unless d 5 13. At large d, this instability is overlooked to 

compute correlation functions by an expansion in - l/d. There is a crit- 

ical point when the renormalized string tension vanishes, with the only 

infrared singular correlations those of the Liouville theory over large 

distances, - 26 - d. At the critical point, there is also a tachyon at 

non-zero momentum; tachyons probably do not occur if d i 26. 
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I. Introduction and summary 

It is natural to view theories of surfaces geometrically, but this still leaves open 

the quest,ion of what kind of geometry. The simplest assumption is that only in- 

trinsic properties of the surface matter. Up to topological or non-renormalizable 

terms, the action must be proportional to the intrinsic area of the surface. This is 

customary in unified theories. where free paramet,ers are undesirable. 

If the surface represents a physical membrane, however, the limitation to intrin- 

sic properties appears extreme. Neither a plane nor a cylinder have any intrinsic 

curvature, as a uniform rectangular grid can be laid down on each. Yet surely any 

real membrane has some stiffness, so if originally in the shape of a plane, resists 

being rolled up into a cylinder. 

A term which responds to the bending of a surface is given by the square of 

the extrinsic curvature. Under the rest,rictions of general coordinate invariance and 

renormalizable couplings, an action formed from this and the area is unique in more 

than three dimensions. In three dimensions, the trace of the extrinsic curvature can 

also appear. 

This theory has been applied to a wide variety of problems,‘-is from determining 

the shape of a red blood cell,’ to Polyakov’s’ suggestion that it approximates flux 

sheets in QCD.9-‘5 The inclusion of the extrinsic curvature appears necessary for 

any realistic model of membranes. With only intrinsic terms, surfaces (with free 

boundaries) can crumple up over arbitrarily short distances, as long as their total 

area is preserved. The extrinsic curvature alone acts to give the surface rigidity, 

smoothing it out over short distances. 

In conformal gauge, where the metric gab = p&b, the action for this model of 

smooth strings is 

S-/d% ~&~(@r)z+/q+~Aab (&z.&~-p6.~)) 

The surface is described by the d-dimensional vector z. The action includes three 

terms: the square of the extrinsic curvat,ure, with a dimensionless coupling o; the 

Nambu term, with string tension p; and lastly, a constraint to ensure the metric 

is that, intrinsic to the surface. This constraint, which is unnecessary in Polyakov’s 

approach to the Nambu model,‘6-‘8 is needed for smooth strings. because they have 
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no local conformal symmetry. 

All surfaces contribute to the action through the metric field p. If by hat p is 

set equal to one, what remains is a sum not over all surfaces, but only those that 

are intrinsically flat (as the intrinsic curvature R - @En(p)). Such a model of flat 

surfaces is far simpler than that of smooth strings: they both have a global O(d) 

symmetry of the z’s, but since the metric p does not appear in flat surfaces, they 

lack the local coordinate invariance of smooth strings. Even so, flat surfaces provide 

a useful analogy to smooth strings. In a different context, I previously proposed 

and studied this model of flat surfaces at large d; i9 these results help in studying 

smooth strings at large d. 

I assume that the surfaces are embedded in Euclidean space-time. Due to the 

higher (time) derivatives in the extrinsic curvature term, in Minkowski space-time 

the energy functional is not positive semi-definite. This produces exponentially 

growing modes in time (see, e.g., Braaten and Zachos”) and, probably, violations 

of unitarity. I9 A P > riori there is nothing amiss with theories of Euclidean surfaces, 

either smooth or flat. 

Helfrich,r Peliti and Leibler,s and Polyako@ found that, like flat surfaces,*a 

smooth strings are asymptotically free in a. In the infrared, a critical point is 

expected as the renormalized string tension vanishes,*-’ p,,, + O1 but the critical 

behavior is as yet unknown. 

Since z appears as an (iso-) vector in the action, in principle it is possible to study 

the theory over all distances by an expansion in large d. The large d expansion of flat 

surfaces is straightforward.ig In momentum space, the z propagator is - l/(p*)‘, 

and it appears that there are power-like infrared divergences. Interactions always 

bring in two powers of momenta, though, so flat surfaces should be viewed as 

a minor variant of the usual non-linear sigma model, with a sigma field - c?,z. 

In perturbation theory, the two-point function of d,z is logarit,hmically divergent. 

- l/pZ. 

At infinite d, an O(d) symmetric mass gap is generated dynamically, with the 

d,z two-point function - l/(pr + mr), m* # 0. At large dT19 and likely for any d in 

which flat surfaces are asymptotically free (which is d > Zr”), correlation functions 

of 13~5, Xab. etc., are all short-ranged, 
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The expansion of smooth strings at large d has been studied by David9 and 

others.‘0,‘2 At infinite d, the results are very similar to those of flat surfaces, sec. II. 

The renormalized string t,ension takes the place of a magnetic field in a spin system. 

The transverse propagator for 8,~ is - l/(p* + m’), with m2 - prc,, at large prcn. 

As ~7.n + 0, a m* # 0 is dynamically generated. 

Unlike flat surfaces, for smooth strings there are problems in going down from 

infinite to finite d. At finite d, fluctuations in p and X”* enter. Consider the one loop 

effective action which describes fluctuations in p. These effective actions of p are 

dominated by conformal anomalies over both large and short distances, sec. 1II.B. 

At large distances, these conformal anomalies generate the same Liouville action as 

found in the Nambu model, - 26 - d; this was suggested initially by Fcrsters and 

Po1yakov.s At short distances, conformal anomalies generate a Liouville action - 

26 - 2d.15 I suggest that a non-renormalization theorem*’ applies to these conformal 

anomalies, so the Liouville actions derived to one loop order are exact. 

These Liouville actions are negative if d is sufficiently large. That each Liouville 

action is negative for large d produces distinct pathologies over both large and short 

distances. There is no analogy to these Liouville actions in flat surfaces. 

In ref. (15) I showed that at arbitrarily short distances, the one-loop effective 

action for smooth strings has negative eigenvalues unless 0 5 d 5 13.‘* The condi- 

tion that d 5 13 follows from requiring the Liouville action at short distances be 

positive. This Liouville action is first seen at one-loop order, so the instability over 

short distances when d > 13 is manifestly of quantum origin. The condition that 

d 2 0 is the same as for an O(d) spin system, like flat surfaces; also, smooth strings 

are only asymptotically free at positive d. ~JO Remarkably, the intersection of these 

two conditions does not include a stable large d limit for either sign of d. This is 

in contrast to most theories. Even the Liouville theory which arises in the Nambu 

model, - 26 - d, can be expanded consistently about d = -w.~*J~ 

In sec. IV I ignore these negative eigenvaiues at short distances to compute 

correlation functions at large but finite d. *4 This is the same thing as using per- 

turbation theory to expand about an unstable point, the only difference being that 

I expand not in a coupling constant, but in - l/d. Consequently, the correlation 

functions so obtained are, at best, only formally defined. 

For calculational ease, I restrict myself to the critical point. At IL,,,, = 0, corre- 
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lations of p and X”” exhibit a pole for a positive value of the momentum squared: a 

tachyon. 

The infrared divergences of the critical point are computed by overlooking the 

tachyon at non-zero momentum. Doing so. I find that any two-point function in- 

volving 8,~ or Xnb is infrared finite. The only infrared singular correlations are those 

of p with itself, and these are governed by the Liouville theory at large distances, 

- 26 - d. 

The outline of the paper is the following. The solution at, infinite d is developed 

in sec. II. The critical effective action at large d is described in sec. 1II.A; the 

one-loop effective action for fluctuations in p, in sec. 1II.B. While involved, the only 

subtlety involves the conformal anomalies. The conformal anomalies of smooth 

strings involve not only those of massless fields, which are familiar from Nambu 

strings, 16-ls but that of a massive field? which is less so. 15~25-27 The behavior of the 

critical correlation functions at large d is summarized in sec. IV. 

There are three appendices. The massive conformal anomaly is checked in ap- 

pendix A. Most of the details necessary to sec.‘s III and IV are relegated to appendix 

B. In appendix C, an integral which typifies the short distance instability of smooth 

strings (for d > 13) is considered. 

The expansion of smooth strings at large d has also been studied, independently, 

by David9 and by David and Guitt,er. lo David9 initially concluded that smooth 

strings are unstable at large d over all distance scales. David and Guitter” then 

argued that smooth strings are stable at short distances, with the only instability 

occuring over large distances for small wL,,,. 

In effect, the criterion that David and Guitter use to determine stability is that 

the two-point function of p be positive. This two-point function is proportional 

to a product of eigenvalues, and so is a necessary criterion for stability. It is not 

sufficient: over short distances when d > 13, this product of eigenvalues is positive 

only because there is a pair of negative eigenvalues. The example of appendix C 

illustrates this. 

Up to this crucial difference, our results are similar. At the critical point, they 

find the phenomena described above. They also study p,,, f 0, and show that 

there are no tachyons for sufficiently large values of pTcn. I stress that while t,he 
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tachyons go away, the negative eigenvalues occur at arbitrarily short distances, and 

so are present for any pr,, 2 0. 

Although it is dangerous, I believe that the results for smooth strings at large d 

can be used as a qualitative guide to the physics over stable values of d: 0 5 d < 13.” 

To do so, I consider smooth strings as an amalgam of Liouville actions, which 

describe p, and flat surfaces, which describe z and X”“. 

I assume that if for small d a Liouville action is positive, then the corresponding 

pathology found at large d, when that Liouville action is negative, disappears. The 

tachyons seen at large d for small p rOn are related to the Liouville action over large 

distances, - 26 - d. Hence I expect that the tachyons are absent when d < 26. 

Similarly, the negative eigenvalues at short distances are related to the Liouville 

action - 26 - Zd. When 0 5 d 5 13, then, I propose that smooth strings are stable, 

free of negative eigenvalues and of tachyons, over all distances, for all fire,, 1 0. 

Continuing, I suggest when 0 < d 5 13, that for pL,,, # 0 correlation functions 

of aox, XOb, p, etc., are short-ranged, damped by mass scales set by prcn and m2. 

At the critical point, a mr # 0 is generated dynamically, so over large distances the 

two-point functions of G’,z and Xab behave like those of flat surfaces, damped over 

scales - l/m. Only correlations of p with itself are infrared singular at the critical 

point, in the universality class of the Liouville theory over large distances, - 26 - d. 

The constraint field X”’ is related to normals of the surface.s If the two-point 

functions of a,z and X”* are short-ranged, then while the extrinsic curvature smooths 

out surfaces over short distances, they remain crumpled at large scales. 

A direct understanding of smooth strings over physical values of d might be 

gained from discrete forms of the model.rs The numerical study of lattice variants 

of the Nambu model show that for a given d, discretizing the model in different ways 

alters the critical behavior. rg Assuming that universality applies, only one type of 

discretization can be relevant to the critical point of smooth strings. 

At the very least, smooth strings can be viewed as a regularization of the Li- 

ouville action - 26 - d. Their example demonstrates that it is sensible to regulate 

this Liouville action without maintaining local conformal symmetry. 

A fundamental property of surfaces is their Hausdorff dimension. If the two- 

point function of 8,~ is - l/(pr + mr), then that of z is - l/(m*p*) as pz - 0, and 
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the Hausdorff dimension is infinite. For flat surfaces, this holds order by order in 

- l/d at large d,” and presumably for any d > 2. For smooth strings, the Hausdorff 

dimension is infinite at large d, sec. 1V.B. Thus it seems probable that it remains 

so over 0 < d 5 13. 

This assumes that the original action is real. If the original action is complex, 

as with Polyakov’s B-like term in four dimensions,s it may well be possible to obtain 

finite Hausdorff dimension. This seems to be the only way of reaching a phase in 

which the surfaces are smooth over large distances. 
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II. Smooth strings at infinite d 

The action for smooth strings is 

Samoo~h=~dD~~(~(~r)‘t~) ; 
q is the covariant laplacian, 

q = $a. (fig%) 

WI 

(2.2) 

The embedding of the surface in d Euclidean dimensions is described by the vector 

z = zfi(z”), where the space-time index 13 (= 1.. d) is generally suppressed. The 

coordinates of the world sheet are the z”, a, b.. = 1,2; 6’. s d/~?r”. I renormalize 

the theory with dimensional regularization by letting the number of dimensions of 

the surface be less than two, D = 2 - 26, 0 5 c < I. 

The first term in eq. (2.1), which can be rewritten as the square of the second 

fundamental form for the surface,*,‘l is the extrinsic curvature term. The second is 

the usual Nambu action. 

Eq. (2.1) is not complete. Unlike Polyakov’s treatment of the Nambu model,‘s 

for smooth strings it is necessary to supplement the action by a term which fixes 

the metric gob to be that intrinsic to the surface. Following ref. (8), I introduce a 

constraint field X”* and add 

S 

to the action. The factor of i is chosen so that integration over real X”” enforces the 

constraint. Like g.b, X ab is symmetric in its indices. 

The constraint field X”” is of physical significance. Using the equations of motion 

for gab, up to factors of fi the constraint field A”* - i Tab, where Tab is the stress 

energy tensor for the original action of eq. (2.1). 

Gauge fixing is done in conformal gauge, gob = p&a, which is allowed for D ( 2. 

To account for the gauge degeneracy of the measure over gab, Faddeev-Popov ghosts 

for general coordinate invariance, Sg,,oJt, must be included. Fortunately, the ghosts 

follow merely from the gauge symmetry and the measure over g.a in the functional 
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integral. Hence their contribution is identical to that for the ghosts in Polyakov’s 

treatment of the Nambu string,‘s-I8 

S ghost = g jd*z (&En(p))' (2.4) 

Altogether, in conformal gauge the partition function for smooth strings is 

2 mmotrt = / ds dp dXob ezp (-&moth - &on,traint - Sgtw,t) (2.5) 

The coordinate z appears quadratically in the action of eq. (2.5), so it can be 

integrated out to produce an effective action, 

.%fr(~,X’~) = ; tr in A;’ + SghoaL + gpl-( - &dab aa, ; (2.6) 

This is to be compared to the effective action for flat surfaces, eq. (3.10) of ref. 

(19). A;’ is the inverse propagator for the I field, 

A-’ = q 2w. -!.-a x”ba z 4” b’ 

which in conformal gauge is 

A,’ = (j&&,-c~a)* - +Yb& 

(2.71~) 

(2.76) 

I determine the stationary point for a manifold with the topology of an infinite, 

flat disc. Given the topology, at infinite d the stationary point is the dominant 

configuration in the functional integral. For the action Ssmooth to be - d at large d, 

it is necessary to take ad and p/d to be fixed numbers of - 1 at infinite d. 

For an infinite disc, the stationary point is obvious: X”* = -i X sob, with p and 

X constants to be determined. For constant p, all that is needed is the free energy 

of the z fields. In dimensional regularization, only the free energy of the massive 

mode contributes, 

tr In (-8’ + m ‘) =.g(;+,+l+ln(~) +...) ) (2.8) 
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up to terms - c. The area of the surface is A, A is a renormalization mass scale, 

and y is Euler’s constant. In eq. (2.7b), ms = X p’+(, and so 

S,,,(/I+X~=*) = Ap A p- -+g(h(+l)) (2.9) 
%en 

The renormalized coupling constant is crrLn: 

1 2, 1 d 1 
-=-=---(-+r+ln(4x)), 
arm a LY aiT t 

(2.10) 

where Z, is the renormalization consant for the coupling, 2, = 1 - da/(8rrc) up 

to finite terms. If Pauli-Villars is used instead of dimensional regularization, I,‘< - 

ln(At,) T ., with A,, the Pauli-Villars mass scale (appendix A). This value for Z, 

agrees with Peliti and Leibler,’ Polyakov,8 and others,6~‘~9~‘0~12~‘5 and shows that the 

theory is asymptotically free. To one loop order, this Z, is correct for any d. 

Notice that there are no terms - In(p) in the action. In two dimensions, m* = 

Xp, so from eq. (2.8) it might be thought that such terms arise. Correctly taking 

m2 = XP~+~, however, these terms cancel. 

The absence of such terms is important. The stationary point is determined by 

requiring S,,l vanish with respect to variations in p and X. Denoting these values 

by p. and X0, eq. (2.9) gives 

x0+ =dZe.zP(--f&j (2.11) 

For X0 > 0, the bare string tension p must be negative. 

There is a natural explanation for why the the constraint field is imaginary 

at the stationary point. As noted above, X”* - iT”‘, with T”* the stress-energy 

tensor of eq. (2.1). Hence if (Xnb) = -i&,6”“, the vacuum expectation value of the 

stress-energy tensor is real, (Tab) - &Jinb. 

For arbitrary p, S,,, in eq. (2.9) is strictly proportional to p. This has two 

consequences. First, at the stationary point the value of pa is not determined, so its 

value must be taken as a boundary condition. Secondly, the only way that S,,, can 

be stationary with respect to variations of p is if S,,, = 0 at the stationary point; 

thus the renormalized st,ring tension vanishes. 
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That po is not determined is merely a result of general coordinate invariance. An 

effective action can only be formed from invariant quantities such as a cosmological 

constant - ,,@, an Einstein term - &R, etc. For constant fields, there is only a 

cosmological constant, - p. 

To be definite, consider a global coordinate transformation, in which the surface 

is uniformly scaled by an amount K, 

z-+z, 2’ + ti 2 ) gab + lc -=g& , XUb --) lcZcXab (2.12) 

This scaling does not disturb the ansatt that the p and X fields have constant values, 

and so is a symmetry of the effective action in eq. (2.9). Then p can only appear 

as Ap, with no terms - In(p) in the effective action. 

From eq. (2.7b), at infinite d (D = 2), the z propagator is 

As - Pi 
-a*(-3 + mZ) ’ 

(2.13) 

where m is the mass for correlations of a,~, 

d = po x0. (2.14) 

To avoid ending up with zero (renormalized) string tension, I integrate not over 

all r fields, as in eq. (2.6), but only with respect to a fixed, flat background: 

z’=&%‘+z;,,,~, z2=~v%tZ+~~o,gr sP’=z~;,/!3’=3...d. (2.15) 

Z is a wave-function renormalization constant, where at large d I can take 2 = 

Z,.* 5 is an arbitrary constant. For constant fields, the effective action for this 

configuration can easily be evaluated:‘eJ2 

Se,,(~,-iX6”~) = A pp+ szx 
-+px 
&en 

-&+&(I+) -1))) (2.16) 

This is stationary if 

? ~ = 
PO%,” 

(2.17) 
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Eqs. (2.16) and (2.17) are invariant under the scaling of eq. (2.12), as long as 

< * n-i<. For fixed 5, however, the scale symmetry is no longer manifest. As a 

consequence, at the stationary point n and (I,,, are not related to each other, as in 

eq. (2.11), but can be varied independently. Similarly, the values of both pa and X0 

are determined. 

Consequently, integration over all z’s inadvertantly imposes a scale symmetry; 

as such, it is reasonable that it produces zero renormalized string tension. For eq. 

(2.16), at the stationary point S,f, = AXo/a,.,, so the renormalized string tension 

is ken = X0/a,,,. 

With dimensional regularization, both the bare and renormalized string tensions 

are finite quantities. Power-like divergences do arise with other regularizations, eq. 

(A.5a) of appendix A. 

What is noteworthy is that there are no logarithmic divergences in the relation 

between p and pL,,,. This happens because while the z and Xnb fields require wave- 

function renormalization, p does not, .* hence there is no anomalous dimension for 

P. 

Take < = 1. In weak coupling, (Y,,, zz 0, the solutions of eq. (2.17) are indepen- 

dent of the renormalization scale A*. 

po x 1 , x0 c m2 , /L,,, R5 n2/a,., =z p (2.18) 

Fluctuations are small when arsn is, so naturally ps zz 1 and IL,,, x p. The result 

for m* can be understood by expanding the original action of eq. (2.1) to quadratic 

order in the transverse modes, Q,: 

s rmoot~++z ((~Z=,,)‘+~a(a,~~,)2) +... 
The correct relation for mr at small ore,,, mr ‘- II,,,, arc,,, is obtained merely by 

replacing bare with renormalized quantities in eq. (2.19). 

The relation mr = prmarm cannot be used in strong coupling, where it would 

imply that mr + 0 as pLlcn,‘d + 0. A s seen from the solution at the critical point, 

eq. (2.11), even when pren/d = 0, m* remains non-zero. In other words, while mr is 

generated perturbatively by II,.,, in weak coupling, at the critical point the theory 

dynamically generates a mass m* # 0. 
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The analogy of smooth strings to flat surfaces, used in the Introduction, is not 

precise. For flat surfaces, only the expansion in the O(d) symmetric phase, as in 

eq. (2.6), correctly describes the vacuum.u’ Expanding with reference to a fixed 

background, as in eq. (2.131, spontaneously breaks the global O(d) symmetry, and 

generates Goldstone bosons: for flat surfaces. fi = 0 in eq. (2.19), so the two-point 

function of a.~,, is - l/p2 in momentum space. 

For smooth strings, expansion about a background field does not generate any 

massless modes. This occurs because the expansion of eq. (2.13) breaks not only 

the global O(d) symmetry, but as well, local reparametrization invariance. Conse- 

quently, the mass mr that is generated for correlations of a,~, as in eq. (2.19), is 

nothing more than the Anderson-Higgs effect. 
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III. Effective actions 

In part A I compute the leading corrections in - l/d to the results at infinite d. 

As with flat surfaces,lg for simplicity I work only at t,he O(d) symmetric point; for 

smooth strings this is the critical point, pL,,, = 0. eq. (2.6). In part B, I compute 

the one-loop effective action for fluctuations in p, at arbitrary d, in the limit of 

small and large distances. Most of the details are relegated to appendices, so what 

follows in this section is largely descriptive. In appendix A, terms dependent upon 

conformal anomalies are checked by using different regularizations. The detailed 

form of the inverse propagator is contained in appendix B. 

A. The effective action at large d 

At large d, with a - l/d and p - d, the effective action of eq. (2.6) is - d. To 

compute effects of - 1, I expand S,,, in p and X”” about their stationary values: 

%,(P, X4*) = Seff(P0, -ib6”b) + 

1 

5 lI( P~A-‘(P>P) ~q +ZP, A-‘(P,~)& + A, A-‘(kx) &) + > (3.1) 

which defines the inverse propagator, A-‘; A-‘(p, X) = A-‘(X,p). The terms linear 

in pp and X, vanish by the stationary point condition. In eq. (3.1) and henceforth, 

the indices on Xt” are often dropped to avoid notational clutter. Anticipating the 

results for A-‘, I define 

p=,.(l+;jEpq) , h.‘+iP+2$A;j 1 (3.2~~) 

with m2 as in eq. (2.14); remember that m2 - 1 at large d. With this normalization 

of pq and X,, A-.-’ - 1 as well. A-’ depends on a single momentum pa. Using m* 

to set the fundamental length scale, I exchange p’ for 

p=g, *a - P =$- (3.26) 

Originally, the p field is dimensionless, while X has dimensions of (mass)*; both 

pq and X, have dimensions of mass. To estimate ultraviolet convergence by the use 
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of regulator masses, it is crucial to use the correct dimensions of these fields, which 

are pqjm and m X,, respectively. 

I discuss the three elements of A-’ in turn. 

To quadratic order in X,, 

A, A-‘(X,X) X, = 

+47r tr Za (m Xi”) Zb (3.3) 

The theory of flat surfacesi5J9 is obtained from smooth surfaces by freezing out the 

metric degree of freedom, p = 1. Since to quadratic order in X, the fluctuations in 

p do not contribute to A-‘(X, X), at the critical point A-‘(X, X) is the same as for 

flat surfaces. 

A-‘(X,X) is given in appendix B. The dependence on the world sheet, indices 

a, b.. ., eq. (B.3a), is defined by the functions Ki - KS, which span the space of 

two symmetric tensors, eq. (B.4). The momentum dependence is carried by the 

functions Jl - J,, eqs. (B.5a) - (B.5d). 

The self energy in eq. (3.3) is completely ultraviolet finite. In terms of the 

physical field, - mX,, about zero (external) momentum the integral in eq. (3.3) 

depends on m as - l/m*. Thus if a regulator mass M replaces m, its effects vanish 

as A4 + co like - l/M’. 

About zero momentum, 

A-i(X, X) - r 8 (K’ + IP) , 

eqs. (B.3a) and (B.6a). The tensors K’ and KZ are combinations of delta-functions 

between a, b.. ., eqs. (B.4a) and (B.4b). As for flat surfaces,lg that A-‘(A, X) # 0 at 

zero momentum represents the dynamical generation of mass - m* for correlations 

of X”b. 
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There are two contributions to A-l(p, X). The first is at tree level, - l/(p~a,,,). 

The second arises from the expansion of tr In A;‘: 

d 
z tr In A;’ z . + i47r pi’ tr 

c 
!?! 1 

n -9 -I- mz 50 (m x”) 2 -a2 : ,* > f... 

(3.5) 
An overall factor of l/p in A;’ has been dropped. Also, p’ is replaced by pi. 

Because of the factor of i introduced with the constraint in eq. (2.3), A-‘(p, X) 

is naturally an imaginary quantity. I pull out the explicit factor of i to define 

A-l(p,X’*) E -i (& 6”* + J,i)olj*) , (3.6) 

eq. (B.3b), with the functions Js and Js defined in eqs. (B.5e) and (B.5f). 

About zero momentum, 

A-~(P, A) = 4; (P + 2j”$b) + . . , (3.7a) 

eq. (B.6). The only divergent contribution to eq. (3.5) is in Js at zero momentum. 

That in all Js = 0 at P = 0 can be checked from eq. (2.6). 

Because A-‘(p, X) vanishes at zero momentum, over large distances correlations 

of Xab and p decouple. This decoupling is special to the critical point: when prm # 0, 

from eq. (2.16) it can be shown that 

A-l(p, A) - -ig6”* + . (3.7b) 

Hence for IL,.,, # 0, over large distances correlations of p and X”* mix, developing 

common mass scales set by both pL,,, and m2. 

At large momentum, 

A-‘(P,J) z -.i !+f?pb + jjy+ , 

eq. (B.7). Again from eq. (2.16), for small a,,, JS zz 4r/(a,,,d), so the logarithmic 

growth of JI, implies 

(3.8b) 
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This is precisely the behavior of arm expected from asymptotic freedom.5-‘~s-‘0~‘z-‘5 

A-‘(P, PI 

Setting X, = 0, the only terms of quadratic (or higher) order in pq arise from 

the expansion of 

; tr,+o In A;’ FZ ; trc-0 In (n)+~tr,+oln (O+pCXo). (3.9) 

(The differences between A;’ in eq. (2.7b) and (3.9) do not matter as c - 0.) The 

ghosts are - 1 and negligible at large d. 

Eq. (3.9) is the sum of the free energies for d massless and d massive scalars in 

a background gravitational field. 

The massless free energy is the most familiar. Its dependence on the metric field 

is entirely through the conformal anomaly. ‘s-1s~*5-2’ To quadratic order in pp, 

; tr,,o In(@) %..+;j/ p,(-;)p.+... (3.10) 

The massive mode is more subtle. Expanding perturbatively in pq directly in 

two dimensions, 

; tr,,o In ( q + A,) z . . - 2iT m4 t7,=0 mz +..., > 
(3.11a) 

=...+; Pq (-G(P)) Pq + (3.116) 

The function L,(P) is defined in eq. (B.2). Up to differences in sign and nor- 

malization, exactly the same function appears in usual non-linear sigma model, eq. 

(C.10). 

While eq. (C.10) is correct in the sigma model, eq. (3.11b) is not the complete 

free energy of a massive field to - p,“. Each arises from the expansion of - tr[n 29: 

the operators 19 are similar at D = 2, but differ when D = 2 - 2c # 2. Thus certain 

terms in t,he massive free energy are missed if c is set to zero at the outset, rather 

than taking a non-zero c - 0. 

Another explanation for the difference can be found by using Pauli-Villars reg- 

ularization, as in appendix A. The essential point is that the the mass dimension of 
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the metric field and the constraint field differ. For a constraint field, of dimension - 

(mass)*, the integral in eq. (3.11a) is like that of eq. (3.4): any effects of a regulator 

mass M vanish as - l/M’. 

In contrast, the metric field is dimensionless, - pq/m. In this instance, if the 

mass m is replaced by M, about zero (external) momentum the integral behaves 

as M*; to order momentum squared, the integral is - 1, and is still sensitive to 

an arbitrarily large mass M. Ultraviolet convergence does not occur until quartic 

order in the momentum, - Pr, when the contributions of a field with mass M are 

- l/MZ. 

Consequently, terms - 1 and - P must be added to eq. (3.11b). The term - 1 

follows by noting that for constant p, the only thing missing from eq. (3.11) is the 

term - p( multiplying Xs. Hence 

; (tr,,o ln (0 + pf A,) - tr,4 ln (0 + X0)) = + ; // Pp (+1) Pq + ‘f. . (3.12) 

The term - P can be read off from previous analysis, for it is known that for a 

field of arbitrary mass, the anomalous part of the trace of the stress-energy tensor 

is always the same. rs-*’ By eq. (3.10) for the massless mode, the anomalous part of 

the free energy to - p,’ is = -P/6. Altogether, the total free energy for the massive 

mode is 

~tr,,oln(C+p’Xo)~...+~ 1.l ( pq +1- ; -2&(P)) ps + . (3.13) 

Adding eqs. (3.10) and (3.13), 

A-‘(P>P) = J,(P) = +I - ; - 2~~p) , (3.14) 

eq. (B.5g). At small momentum! 

a-‘(~, P) zz -;+... , (3.15) 

eq. (B.6g). Eq. (3.15) shows that for the massive mode, all terms - 1 and - 

P cancel identically about, zero momentum: eq. (3.15) comes entirely from the 

massless mode, eq. (3.10). At large momentum, the massless and massive modes 
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contribute equally t,o give 

a-‘(~, P) z -;+... : (3.16) 

eq. (B.7g). 

When I first computed A-‘(p,p) in ref. 15, I missed the corrections to eq. 

(3.llb) that produce eq. (3.13). At large momentum, eq. (3.14) behaves as in eq. 

(B.7g), which agrees with eq. (7’) of the corrected version of ref. 15. 

The results for A-’ can be compared to those of David9 and of David and 

Guitter.” Up to differences in normalization, my expressions for A-‘(p,p) and 

A-‘(p,X) agree with these works. For reasons that I do not understand, that for 

A-‘(X, X) does not. 

It is worth discussing the regularized free energy of the massive mode in greater 

detail. The cancellation of the terms - 1 could have been anticipated in sec. II. 

The effective action of eq. (2.9) . is valid for fields p and X that have arbitrary, 

constant values; thus it can be used to read off n-point terms for pq and X, at zero 

momentum. Since p only appears linearly in eqs. (2.9), at zero momentum any 

n-point term for pq vanishes when n 2 2. Eq. (3.15) verifies this for R = 2. From 

eq. (2.16), this remains true if p,,, # 0. 

To understand the terms of order momentum squared, - P, instead of talking 

about the free energy I consider the trace of the stress energy tensor.25-2’ For a 

scalar field C#I of mass m, in two dimensions the trace of the classical stress energy 

tensor is 

T”,=-m’@. (3.17) 

The vacuum expectation value of eq. (3.17) is computed in a background grav- 

itational field. For a massless field, 

G”:)r.n,m=o = & R 

Eq. (3.18) agrees with eq. (3.10) to leading order in p - po, as the intrinsic curvature 

R = -(l/p)@1n(p). By general coordinate invariance, the only term that can be 

formed from two derivatives of p is R, so eq. (3.18) is exact. 

The complete expression for a massive field in an arbitrary gravitational field is 
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not simple, but the limiting forms are. When the curvature R is much larger than 

m2, 

iT” i , o,rrn,mFO =z &R +O(m’) (3.19) 

Eq. (3.19) agrees with (3.18), for if R > mzl it doesn’t matter if the field is strictly 

massless, or has a mass that is small on the scale set by R. 

In the opposite limit, R < m’, the terms - R cancel identically: 

U’:) rcn,mfO = a 772 + 
1 FIR 

~ -+... , 
120~ m* 

(3.20) 

for some constant a. That there are no terms - R in eq. (3.20) implies that the 

massive mode doesn’t contribute to A-‘(p,p) until - P*, eq. (3.15). 

These results for (T”,) are most easily derived by Pauli-Villars regularization, 

appendix A. For a scalar field of mass m, 

W) z& $+... ) 

in the limit of small R, R < ms. To compute the renormalized value of T”,, 

it is necessary to add the contributions of all fields, physical and regulator. For 

the massless mode, there is no contribution from the physical field, and the entire 

result is from the regulators. Plugging eq. (3.21) into eq. (3.17) gives eq. (3.18), 

remembering that the sum of all regulator fields contribute as one physical field 

with the wrong spin-statistics connection, eqs. (A.12a) and (A.19). 

For the massive mode in the limit of small R, the vanishing of terms - R, 

eq. (3.20), follows simply because each field contributes the same amount to (T”,), 

independent of its mass: the rns in eq. (3.17) cancels against I/m2 in eq. (3.21). 

The physical field contributes -R/(24r) to (T”,), but the sum of the regulator fields 

contributes +R/(24n), eqs. (A.17) and (-4.18). 

For the massive mode at large R, as in the massless case the term - R is due 

entirely to the regulators, eq. (3.19). 

This behavior of the conformal anomaly at large and small R is implicit in the 

work of Bernard and Duncan126J0 and discussed at length by Bunch, Christensen, 

and Fulling. *’ Hopefully my discussion, while not novel, is at least illuminating. 
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B. The effective action for metric fluctuations 

The results for A-‘(p,p) determine the effective action for fluctuations in p. 

For clarity, I use as the momentum variable the (original) momentum squared, p*, 

instead of P = pZ/mZ, eq. (3.3). 

The effective action for fluctuations in p is 

i?(p) = s./,(p,-ixo6”b) - S,,,(po,-iXo6”b) (3.22) 

With po and XO the stationary point values, by definition i(p) starts out quadratic 

in p. In the limit of large and small distances, s(p) is dominated by conformal 

anomalies. 

I consider i(p) to one-loop order at arbitrary d. For small d I expand about 

a background field in weak coupling, eqs. (2.15) - (2.18). The d - 2 transverse 

modes, z +, and the 2 longitudinal modes, zi ong, produce a total conformal anomaly 

of the z fields that is strictly - d.22 From eq. (3.9), the conformal anomalies of 

d massless and d massive fields enter. At small d, the conformal anomaly of the 

ghosts must also be included, eq. (2.4). 

From eqs. (3.18) and (3.20), over large distances only the d massless modes and 

the ghosts contribute, 

S(P) = G/d’= (&h(p))‘+... , 

up to terms quartic in the momentum, - J (3’ln(p))‘. 

F6rster6 and Polyakov* first suggested that this Liouville action, familiar from 

Polyakov’s quantization of the Nambu string,16 appears in smooth strings. Their 

argument is essentially dimensional analysis: in the original action, the extrinsic 

curvature term has more derivatives than the Nambu term. Over large distances, 

the term with the fewest derivatives dominates, so in this limit the Liouville action 

is that of Nambu strings. 

To understand why the d massive modes don’t contribute over large distances, 

remember that the Liouville action is non-local in an arbitrary gauge,‘s 

26 - d 
it(p) z ~ 

96rr 
R;R. (3.24) 
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In (T”,), the massive mode produces terms - 1 and - o R, but those - R cancel, 

eq. (3.20); this cancellation is why the massive mode doesn’t contribute to S(p) 

over large distances. For the effective action, the term - I in (T”,) becomes a 

cosmological constant; that - q R contributes - J RZ to S(p). If the massive 

mode did contribute - R in (TO,), this would represent a non-local term in S(p), 

eq. (3.24). But all contributions of a massive field to S(p) are infrared finite, 

constructed entirely from local expressions involving R, c R, etc.; t,here is no way 

a massive field could generate a non-local term. 

From eqs. (3.18) and (3.19), at short distances 

26 - 2d 
%4 = g6x d*z (a. In(p))* - 5, + ; 

& represents terms of - 1, with eq. (3.25) valid up to corrections that are - 

IS P (qP2)/Pz) P, etc. 

Eq. (3.25) can be established directly. As in eq. (5.6) of Alvarez,‘* I expand 

the free energy of the d massive modes in powers of the mass: 

+... (3.26) 

The first term is the massless free energy, and through its conformal anomaly con- 

tributes - -d to the Liouville action; that - m* generates Si. While the other 

terms in eq. (3.26) are infrared divergent, they are all ultraviolet convergent, and 

only contribute to corrections to eq. (3.25). 

Eq. (3.26) shows that in a strong gravitational field, the free energy of a massless 

and a massive particle are equal. Thus at short distances, the d massless modes 

and the d massive modes produce a Liouville action proportional to - 26 - 2d. 

$1 can be computed, although eq. (3.26) isn’t the way to do it. Power counting 

shows that the perturbative contribution to an n-point function for t,he pq’s (i.e.. 

with e = 0) vanishes at large momentum. For example, when n = 2, the contribution 

of eq. (3.11) is - 6n(p2)/pz at large p*; when n > 2, the analogous term behaves 

as - l/p’. The only way that terms - 1 can arise at large momentum is as in eq. 

(3.12), through contributions in the massive free energy as t + 0. For arbitrary, 
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constant values of p, 

6n ( q + PC m2) ~ tr,,,, In ( q - m2)) = A g pin(p) (3.27) 

From this, the value of this expression at p = pa, and that part proportional to 

p ~ ps, must be subtracted to give Si in eq. (3.25), 

%=A% (d+) -(P-PO)) (3.28) 

The Liouville actions in eq. (3.23) and (3.25) hold to one loop order. I suggest 

that these leading forms are exact, to any order in the loop expansion, for any d, 

and any p rl,, 2 0. That is, following Alvarez i* I propose that a non-renormalization 

theorem applies to the conformal anomalies of smooth strings. 

By previous argument, this theorem holds in the (admittedly unstable) limit of 

large d. A formal argument can also be given at d = 0. From eq. (2.6), at d = 0 the 

matter fields drop out, and immediately S(p) = Sr,,O.f. This agrees with calculation 

of the P-function,s~20 which vanishes to one-loop order when d = 0, and presumably 

to all orders. 

A non-renormalization theorem crucially affects the critical behavior of smooth 

strings. From sec. IV.A, the infrared singular correlations are those of the Liouville 

action over large distances, eq. (4.6). As t,he only thing which determines the 

universality class of the Liouville a&on is its coefficient - 26-d, if the critical point 

of smooth strings satisfies universality, then this coefficient cannot be renormalized. 
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IV. Correlation functions 

To quadratic order in small fluctuations, stability is determined by the eigenval- 

ues of A-‘. The functional integrals over small fluctuations are damped. and so well 

defined, if each eigenvalue has a positive real part over all momenta. (Remember 

that with the constraint of eq. (2.3), the functional integral is over real values of 

A,; of course p* is real.) 

Consider first flat surfaces,‘5Jg which have no metric degree of freedom. Stability 

is determined the the eigenvaluesof A-‘(A, X); as described in appendix B following 

eq. (B.S), t,he three eigenvalues of A-‘(X, X) were computed numerically. Each 

eigenvalue is positive over all momenta, so flat surfaces are completely stable at 

large d. This is standard for a sigma model. 

Coupling a metric field to flat surfaces, to produce smooth strings, completely 

alters stability. A-’ is now a 4 by 4 matrix, with the diagonal component for the 

metric field dominated by Liouville terms at small and large momentum. From ref. 

(15), at large d there is a pair of negative eigenvalues over short distances. This is 

not surprising: as the Liouville action over short distances is negative, the action of 

a fluctuation about the stationary point can be made arbitrarily large and negative 

by moving in the direction of ps # 0 with X, = 0. To understand why this leads to 

a pair of negative eigenvalues, see the example of appendix C, eqs. (C.l) - (C.5). 

It is possible to use the results at large d, with pcrLn = 0, to compute at small d. 

For small d, it is necessary to expand to one-loop order about a given background, 

eq. (2.15), in the region of weak coupling, where p,., =-> rnr, eq. (2.18). As 

discussed in the previous section, in A-i(p,p) the contribution of the ghosts must 

be included. At short distances, the results for A-‘(p, X) and A-i(X, X) can be 

carried over unchanged. This is because at large momentum, in each one channel 

dominates the others by a logarithm, eqs. (B.7b) and (B.7e). As in eq. (3.8), these 

logarithms reflect coupling constant renormalization. Since to one-loop order t,he 

p-function of smooth strings is strictly proportional to d,8-*o this renormalization, 

computed at large d, is valid down to d = 0. At small d these results are only 

applicable over short distances to the order of leading logarithms; beyond this, 

details of the background, IL,,, # 0, enter. 

Using this, in ref. (15) I showed that there are negative eigenvalues unless 

0 5 d 5 13.3’ When 0 5 d i 13, it can be shown that at least at short distances, 
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any fluctuation about the stationary point will give a smaller contribution to the 

functional integral than the stationary point. When d > 13, instability occurs 

because the Liouville action at short distances is negative. 

I define the propagator A as the matrix inverse to A-‘. While the physical 

meaning of this A is questionable when d > 13, it does have the virtue of being 

mathematically well-defined; of course it is the right propagator over stable values 

of d, 0 < d 5 13. The correlations of pr and X, found from this A are considered in 

sec. A. In sec. B, I show that the Hausdorff dimension of smooth strings is infinite 

at large d. 

A. Correlations of p and Xab 

In sec. 1II.B I showed that the effective action for fluctuations in p assume a 

Liouville form at small and large momentum. The appearance of these effective 

actions is deceptive, however, for while they do dominate s(p), usually they do 

not dominate correlation functions of p. If correlations of p could be computed 

from s(p) alone, the propagator for p would be A(p,p) - l/P at large and small 

P. With one important exception, however, mixing between p and Xnb removes 

the logarithmic singularities that arise from a Liouville action. (I revert to using 

P = pZ/mZ, eq. (3.2b), as the momentum variable.) 

I start with the correlation functions at large momentum. As noted above, 

merely by including the ghosts it is possible to compute to leading logarithmic 

order at arbitrary d. 

The two-point function of p, A(p,p), is given in eq. (B.16h). With the nor- 

malization of pp and X, in eq. (3.2a), the ghosts show up in A-’ and A as terms 

- l/d. Thus to find the Liouville action in A(p,p) at large P, it is enough to look 

for factors - l/d. The only dependence on - l/d enters in the denominator of 

A(p,p), which is the function Ds, eq. (B.18a). At large P, 

Dg = (l?(P) - 31n2(P) + (y + 3) In(P)) -& + , (4.1) 

eq. (B.21a). While the ghosts are non-leading at large P, eq. (4.1) does show that 

the Liouville term in A-‘(P,P) is down by - l/lnr(P) relative to the leading term. 

This occurs because Dg is proportional to the determinant of A-‘, eq. (B.lO). 
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As P + 00, while A-‘(p,p) - P, A-‘(p,X) - In(P), and A-‘(x,x) - In(P)/P, eq. 

(B.7). Thus in det(A-‘), the product of the diagonal terms A-‘(p,p) and A-‘(&,!) 

is - In(P), which is smaller than the square of the off-diagonal term A-‘(p,X), 

- In2(P). When the detailed form of 09 is computed, the contribution of A-i(p,p) 

is actually suppressed by an extra - l/in(P), - l/in’(P) altogether. See, also, the 

example of appendix C, eq. (C.4). 

Using eqs. (B.16h) and (B.21g) to compute A(p,p) at large P, 

While at short distances A-‘(0,~) is negative when d > 13, in this limit A(p,p) is 

positive for any d 2 0. 

Consider the vacuum expectation value of pi, (pi). If the Liouville action could 

be used to compute (pi), it would be - JdP/P = ln(A%), where A,, is a cutoff 

in momentum space. Because of the factor of l/ln2(P) in eq. (4.2), however, 

(pi) - l/[n(A,,) at large P, and is completely ultraviolet finite. 

At large momentum, the Liouville mode does not dominate Dg, and so A(p,p), 

because A-‘(p, X) - In(P). From eq. (3.8), this behavior of A-‘(p,X) is a conse- 

quence of asymptotic freedom in the coupling o,.,. Thus it is possible to say that at 

short distances correlations of p are finite and well-behaved, and not logarithmically 

divergent as in a Liouville theory, because smooth strings are asymptotically free. 

The two-point function of X, is involved, as there are five independent channels, 

eq. (B.lla). Most of the channels are like D s, in that they are not dominated by 

the Liouville term at large momenta, eq. (B.21). 

By itself, though, each channel is not of much significance. For instance, in 

computing any correlation that involves virtual X,‘s, all channels in A(X, X) con- 

tribute. To disentangle the channels, I form an isoscalar quantity from A(,!, X) by 

computing the two-point function for the trace of Xi”, Xi G Xi,.. This is defined in 

eq. (B.19). From eq. (B.21), at large P 

A(x:, Xi) = (;-l+(y-1j&))36;f;p)+...; (4.3) 

The correlation function like that of eq. (4.3) can be computed in the O(N) 
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non-linear sigma model at large, positive N; from eq. (C.lO), it is positive. In the 

model of flat surfaces at large d, some channels of A(x,x) are positive, and some 

are negative. i9 When A(x;, Xt) is formed, however, it turns out to be positive over 

all distance scales (appendix B, the discussion following eq. (B.19)). 

This indicates that positivity of A(Ai, Xi) can be used as a (necessary) criterion 

for stability in the theory of smooth surfaces. From eq. (4.3), at short distances 

A(xi,xi) is only positive if d 5 13. 

At first it seems odd that the instability at short distances, which arises from the 

Liouville mode in A-i(p, p), should manifest itself not in A(p,p), which by eq. (4.2) 

is always positive, but in A(Xi,Xi), which is only positive if d 5 13. The example 

studied in appendix C, however, shows that this has an elementary explanation, 

eqs. (C.7) and (C.8). 

I next turn to studying A over the entire range of P at large d. I concentrate 

on the function DQ, as it appears in the denominator in most channels of A, eq. 

(B.16). As P i 0, 
P 

DgX---, 
48 (4.4) 

eq. (B.20a). From eq. (4.1), at large P DQ is positive, so it must have at least one 

zero at P # 0. Numerical analysis, described in appendix B, shows that it has one 

(simple) zero, at a value of P = Pi, 

Pt = 1.16943.. (4.5) 

For LL, = 0, DQ is negative over 0 < P < Pt, and positive over P > Pi. 

As l/D9 appears in the propagator, a simple zero in D9 implies the spectrum 

has a tachyon at P = Pt. This assumes that the numerators in A are non-zero when 

P = Pi, which was checked: the tachyon occurs in all two-point functions of p and 

Xab, eq. (B.16). 

To study the critical point at large d, I ignore the tachyon at non-zero mo- 

mentum, and concentrate on the behavior of the correlation functions about zero 

momentum. From eqs. (B.16) and (B.20), the two-point function of p is infrared 

singular: 

A(p,p) +... , (4.6) 
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as P -+ 0. All other two-point functions are infrared finite at the critical point - 

each channel of A(p, X) and A(x, X) is at least - 1 as P + 0. For instance, 

A(% A:, z-4+... , (4.7) 

so while A(Xz, Xi) is negative a< short distances, eq. (4.3), it is positive about zero 

momentum. 

Eq. (4.6) is nothing other than l/A-i(p,p) at zero momentum? eq. (3.15). At 

the critical point, the pr and X, fields decouple over large distances: from eq. (3.7a), 

a-‘(~, A) - P. The X, fields act like those of flat surfaces, with a non-zero mass 

gap, while correlations of the metric field are determined by the Liouville action at 

low momentum. 

This result is surely general: about the critical point, the infrared singular 

correlations are those of the Liouville theory at large distances, eq. (3.23). 

Given this, it appears likely that there are tachyonsonly if d 2 26. When d > 26, 

the Liouville action - 26 - d, and thus A(p,p) as P + 0, are negative; A(p,p) is 

positive at large momentum, eq. (4.2). From eq. (B.l6h), A(P,P) = Db/D9. 

The function 0; appears in flat surfaces as the denominator in most channels of 

A(x,x).t9 At large d, and probably for any d > 2, r” Db is positive for any finite 

P, as it must be for Rat surfaces to be stable and free of tachyons. Thus if A(p,p) 

changes sign, it can only do so through DQ; but a zero in the denominator means 

there’s a tachyon. Conversely, when d < 26, A(p,p) is positive about P = 0; it is 

natural for it to remain positive and finite at P # 0, with no tachyon. d = 26 is a 

special case, as the Liouville action - 26 - d vanishes. Of course, when d = 26 the 

usual Nambu string has a tachyon in a different correlation function. 

The decoupling of p and X”” over large distances occurs only at the critical point, 

IL,,, = 0. From eq. (3.7b), when prcn # 0 these fields mix over large distances: D9 is 

non-zero at zero momentum, as both fields develop mass gaps which depend on the 

values of II,,, and mr. Consequently, the logarithmically divergent correlations of p 

that arise with a Liouville action generally do not persist for smooth strings: never 

at short distances, and not over large distances away from the critical point. For 

smooth strings, the only place where divergent correlations arise is where expected 

- over large distances near the critical point. 



-28- FERXIILAB-Pub-87/23-T 

I conclude this section by discussing t,he relationship between my results and 

those of David and Guitter. ” These authors come to very different conclusions 

about the same problem. They determine stability not by the eigenvalues of A-‘, 

but by the condition that A(p,p) > 0. If true, smooth strings would be stable at 

short distances for any d > 0. 

While A(p, p) should be positive, by itself this does not guarantee stability. From 

eqs. (B.lO) and (B.l6h), A(p,p) has the same sign as t,he product of the eigenvalues 

of A-‘. But knowing that the product of eigenvalues is positive is not sufficient 

to ensure that each eigenvalue has a positive. real part. When d > 13, at short 

distances A(p, p) and the product of eigenvalues is positive because there is a pair 

of negative eigenvalues. Further, at short dist,ances the instability appears not in 

A(p,p), but in A(Xi,Xi). Correlations of A”*, and in particular those of Xn,, were 

not computed in ref. (10). Appendix C discusses the short-distance instability in 

the context of a simple example. 

Other than this, our results are in general agreement. At the critical point, bhey 

find that only correlations of p are critical, as in eq. (4.6), with a single tachyon at a 

non-zero value of P, eq. (4.5). Eq. (4.2) does not agree with ref. (lo), presumably 

because our results for A-*(X, X) differ. 

David and Guitter also studied prm i: 0. When pr,,, # 0, Ds is positive at 

P = 0; if p,,, is sufficiently large, it stays positive over all P. Hence they find a 

certain value of p,., above which there are no tachyons. 

B. Correlations of z 

Using eq. (2.13), the two-point function of z at zero momentum is 

((4’) = /;,, p(;p 1) = WA) (4.8) 

at infinite d. This shows that the mean square size of the surface grows logarith- 

mically with the area, with infinite Hausdorff dimension. This result holds for all 

p,,, 1 0: since rnr is always non-zero, sec. II. 

At finite d, the leading corrections t,o the transverse propagator A;’ are given 
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by the self energy C,, 

A-’ zz z zc (P(P+l)+q 
PPO 

(4.9) 

To - 114 

c, = $$ ((P;, I’* - W-W)) , (4.10) 

where V is the vertex 

1/= $ 
! 

@p,~Z+imZ~ab~b~b 
) 

The external momentum pa flows through the loop integral in the second term of 

eq. (4.10); C, depends only on P - pz. 

In a leap of faith, at pL,,, = 0 I ignore the tachyon at P = Pt, concentrating on 

the loop integral about zero momentum to see if the Hausdorff dimension changes. 

It doesn’t, for about zero momentum the contribution of the two-point function of 

pp to C, is - P2 J dK; this is infrared finite, and down relative to terms - P from 

virtual X,‘s. This remains true for pren # 0, as a consequence of the mass gaps for 

pq and X,. 

The obvious limitation is that this calculation ignores the tachyon. For flat 

surfaces, however, it is possible to calculate (reliably) at large d. In this instance, 

the Hausdorff dimension remains infinite, as in eq. (4.6), order by order in - l/d: 

see eq. (7.6) of ref. (19). 
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Appendix A: Alternate regularizations 

In this appendix I check some of the results in sections II and III by using heat- 

kernel and Pauli-Villars instead of dimensional regularization. For the results of sec. 

II, this is done to establish notation more than anything else. For the conformal 

anomaly of the massive mode in sec. III, however, the detailed way in which the 

final result emerges is very different with each regularization. Thus it is worth doing 

the calculation in other ways. 

Heat-kernel regularization 

For a massive scalar, the diffusion equation is 

(A.1) 

with t the diffusive “time”, and 0 the covariant Laplacian of eq. (2.2). For a 

constant metric field, 

G(z,O;t)=& ezp(-&$-At) 

The free energy of a massive scalar in a background p field is 

tr1n (0 i A) = ~ JFm ; tr e-r(o+A) ( 

where [ is the cutoff in proper time; it has dimensions of inverse mass squared, 

so it is related to an ultraviolet cutoff Au. as E z l/A:,. Using properties of the 

incomplete gamma function, 

trin(O+X)=-g ;+A(ln(:x)+7-l) +... , (A.4) 

dropping terms - [. Using eq. (A.4), the effect,ive Lagrangian of eq. (2.9) can be 

recovered by taking 

(A.5a) 

(A.5b) 
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This is just a redefinition of the relation between the bare and renormalized pa- 

rameters. Unlike dimensional regularization. there are now power-like divergences 

which renormalize the bare string tension; there are still no logarithmic divergences 

in the relation between p and firen. The divergent part of eq. (A.5b) agrees with 

eq. (2.10). 

To obtain the conformal anomaly for t,he massive mode, I follow Alvarez.” 

Define p = es&o), and consider the variation of the free energy under an arbitrary 

variation with respect to o: 

6trln(O +x,=/Em citt+z e-y (A4 

Since 

6C=600, (A.7) 

eq. (A.6) can be integrated by parts to yield 

6 2rln (0 + A) = tr (60 e -ml+U) - x p t7 (& e-f(o+v) (A.81 

The first term on the right hand side can be identified as the anomalous part of 

the free energy (eq. (3.57) of ref. (18)), while th e second is the usual, perturbative 

contribution for a massive field. 

I compute eq. (A.8) about, zero momentum. To lowest order in u,rs 

tr p) c 
J&t+ 

1 
--aa 7 , 
24~ 

where for convienience I expand about os = 0. Then 

6trln(o +X)eA (&+...) &+A(&-~)c%o+.... (A.10) 

The constant term, proportional to - 60, can be read off from eq. (A.4). What 

is of note is that the terms proportional to momentum squared, - #o 60, cancel. 

This cancellation is between the anomalous and perturbative t,erms in eq. (A.8), 

and persists to all orders in o, - o” $0 60. 
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Pauli-Villars regularization 

Pauli-Villars regularization can be used, since the addition of a mass term does 

not affect general coordinate invariance. The free energy of the massive mode is 

defined as: 

tTp”ln(GfX)=~citrln(3TXi). (A.11) 
,=I 

There are r fields, each with weight cf. The first field is physical, with c, = I and 

Xi = X. The other r - 1 fields are regulator fields, whose X, - AZ,, where Ati” is a 

large mass scale that is ultimately taken to infinity. In two dimensions, eq. (.1.11) 

is ultraviolet finite if two conditions are satisfied: 

(A.12~2) 

&Ji = 0. (A.lZb) 

Because of the second condition, there must be at least two regulator fields; e.g., 

c2 = -2, Xs x AZ + ., and cg = 1, Xs x ZAZ, f With eq. (A.lZ), “U 

= -g d,A;” (A.13) 

with dl and dz constants that depend upon the choice of the ci’s. Eq. (A.13) is 

identical to eq. (A.4), up to inessential changes in the relations between bare and 

renormalized quantities. 

To calculate the momentum dependence, I assume that the background metric 

ps = 1, and expand 

p=1+p. 

Since Pauli-Villars is just perturbation theory, in calculating the free energy of the 

massive scalar it is permissible to assume that 

iPk) =...+A;‘;+... , (A.14) 
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where 

(A.15) 

pz is the momentum squared: the function L4 is given in eq. (B.2). From this, the 

Pauli-Villars regulated inverse propagator is 

A,; = 2 ci A,’ (A.16) 
i=1 

For the massive mode, this can be rewritt,en as 

A;; = -&&Xi + 
r=1 

&$C.+a,@~i (l-&-Z&($)) (A.17) 

In eq. (A.17), the terms - 1 and - p2 in the function L4 have been pulled out 

explicitly, so about zero momentum, the last term begins at order - (p’)‘/Xi. From 

eq. (A.12), the terms - 1 and - p2 cancel about zero momentum. For the last 

term, since order by order in p* they always depend on Xi as l/Xi, the contribution 

of the regulator fields can be dropped as A,, + co. Thus only i = 1 contributes, 

I-&2L4 (A.18) 

eq. (3.13). From eq. (A.lZ), for the massive mode the cancellation of terms - 1 

and - p* persists to all higher orders in 5. 

For the massless mode, Xi = 0, so A;’ = 0, and the sum in eq. (A.17) runs only 

over the regulator fields, i = 2 to r. As C:=s ci = -1, 

eq. (3.10). This explains why the conformal anomaly of a physical field has the 

“wrong” sign: it’s all due to the regulator fields. 
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Appendix B: &’ and LI 

In this appendix I give the detailed results for the inverse propagator A-’ and 

the propagator A used in sections III and IV. 

The one loop diagrams which arise in the calculation of the inverse propagator 

A-’ all involve the exchange of two s-fields. The higher derivative z propagator, 

eq. (2.13), can be written as a difference of a massless and a massive mode, 

1 1 

pqp2 
= 

+ d) 2 ( 

1 1 -- 
p2 ) p2 + ?nz : P.1) 

so in A-’ there are functions which have discontinuities for Minkowski values of 

the momenta, pz < 0, corresponding to the exchange of two massless modes, one 

massless mode and one massive mode, and two massive modes. 

In terms of the dimensionless variable P = p2/m2, these three functions are, 

respectively, 

Lo = h(P)) L1= ln(P + 1)) Ld = 
p&j In $g ’ $) ( (B.2) 

These functions, like those which arise in A-’ and A, depend only upon P. For 

notational ease this dependence is suppressed, and should be taken for granted. 

The inverse propagator is 

A-‘(& X) = 51 (K’ + K’) + 5s K3 + 53 K’ + .J4 K5 , 

A-‘(p, A’=*) = -i (Js 6”b + J&fib) , 

A-l(~,~) = JT , 

(B.3a) 

(8.36) 

(B.3c) 

with j” the unit vector along p”, eq. (3.2). 

The K’s are matrices which span the space of two symmetric tensors: 

K,& = 6”’ gbd + 6”d sbc 1 

K&, = 6”” 6cd , 

K& = ffy gbd + yfid 6bC + cby 6”d f $b$d 6°C i 

(B.4a) 

(B.4b) 

(B.4c) 
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K& = i)“jib scd + jYfid sab , 

Kzbscd = y$b$“$d ; 

(B.4d) 

(B.4e) 

the tensors 

K:$cd = mb6cd , , K:,, = i)‘cd 60b , (B.4f) 

also arise. The multiplication table for the K’s is given in eq. (4.20) of ref. (19). 

The functions Jr - Jd can be read off from eq. (4.15) of ref. (19): 

(P + 1Y L1 + (P + 4)* L 
12PZ 24 ” 

(B.5a) 

(P” + 3P2 + 6P + 4) L1 _ (P + 4)’ L,, 
12P2 

(B.56) 

J,=-$+&Lo- 
(P” - 3P - 2) L1 + (P - z,,,“: 4) L, 

;:(p;l)Ll+L,)l; 

(B.5c) 

(B.5d) 

There are two typographical errors in ref. (19): in eq. (4.15c), the coefficient of J3 

involves P + 4, as in eq. (B.~c), while in eq. (4.13a), the coefficient of the last term 

should be -2 and not -1. 

The others J’s are: 

J,=-1+(‘14)L,, (B.5e) 

Js=l-2LI, (B.5f) 

J7=1+ y-1 $-2LI. 
( > Ww) 

The contribution of the ghosts, - l/d, is included in eq. (B.5g). As discussed at 

the beginning of sec. IV, for arbitrary d this is only valid to the accuracy of leading 

logarithms at short distances. Thus I only keep terms - l/d at large P. For the 

purposes of discusssion in sec. IV, I often keep terms - l/d at large P that are not 

leading logarithms. 

About zero momentum, P + 0, 

J1%-+- l (L;$)p+..., 
8 

(B.6a) 
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JZ +P+;Pz+... , (B.6b) 

J3 o (B.6c) 

P 2 
J,C-- 

6 
15Pz+... , (B.6d) 

P PZ 
J5a---++,,: 

12 120 
(B.6e) 

P PZ 
Jsx-- 

6 30+... ’ 
u3.61) 

P PZ 
5,x----+... . 

6 30 
(BQ) 

up to corrections - P3. The only function which doesn’t vanish at zero momentum 

is J,. 

About large momentum, P > 1, 

1 
53=--f... , 

2P 
2 

J,=-A... , 
P 

(B.7c) 

(B.7d) 

LO 
J5 a --I+ __. , 

2 
(B.7e) 

Je = 1+... ( (B.7f) 
J, z 

13 

( > --1 $l.... , 
d (8.79) 

up to corrections - l/P times smaller. The greatest term at large momentum is 5,. 

Other than that, JQ is larger than J,, Jz, and J4 by a factor of In(P); Js dominates 

Js in the same way. As illustrated by eq. (3.8)> th ese In(P)‘s are due to asymptotic 

freedom. 

The values of the J’s for intermediate values of P were determined numerically. 

The only point of importance, which can be guessed from their limiting forms, is 

that J1 and J, i Jz are positive for all 00 > P 2 0. 
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First I describe how to calculate the eigenvalues of A-‘. I take a basis given by: 

(A A”, x2*, (x1* f x21) / v5) (B.8) 

The eigenvectors of A-’ depend on the direction of the vector j”, but the eigenvalues 

do not. Assuming p = hoi, 

A-’ zz 

i 

J7 -i(Js + J6) -iJs 0 

4Js + Js) 351 + 4J2 + 2J3 + J, J1 + J3 0 

-iJs Jl Jz i + 351 0 (B.9) 

0 0 0 2CJ1 + Jz) 

In this form, one eigenvalue is immediately seen to be 2( J, + Jz), 

The eigenvalues for the model of flat surfacesrs~‘* can be determined from eq. 

(B.9). Flat surfaces only involve constraint field Xnb, where the inverse propagator 

for Xob can beg read off from eq. (B.9) by setting Js = J6 = 5, = 0. The three 

eigenvalues of A-‘(X, X) for flat surfaces are then 2(J1 + Jz) and two others, which 

are found by solving a quadratic equation. By numerical means I showed that each 

eigenvalue is real and positive for all 0 5 P < co. 

For smooth strings, the four eigenvalues of A-’ can be determined analytically 

at large momentum in any number of dimensions, ref. (15) and (31). The Liouville 

theory at high momentum, - 13 -d, dominates the eigenvalues for d F 13. At large 

momentum when d > 13, A-’ has two eigenvalues with a positive real part, and 

two with a negative real part. 

The eigenvalues A-’ for smooth strings were determined numerically over all 

P at IL,,, = 0. To understand them, it is simplest to consider the product of the 

eigenvalues: 

det(A-‘) = 2 (51 + Jz) Ds , (B.10) 

where the function D9 is defined in eq. (B.18a); remember that J, + Jz is always 

positive. The behavior of the function Dg is discussed in sec. IV; it is negative for 

P < Pt, and positive for P > Pr, eq. (4.5). When P < Pt, A-’ has three positive 

eigenvalues. and one negative one. .4t P = Pr, there is one zero eigenvalue, which 

corresponds to a simple zero in Dg. As P increases, it develops two eigenvalues with 

a negative real part. 
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For flat surfaces, A-‘(X, X), and its eigenvalues and eigenvectors, are all real. 

For smooth strings, because A-‘(p, X) is imaginary. A-’ and its eigenvect,ors are 

complex. This complexity is innocuous: for example. eigenvalues with a non-zero 

imaginary part always come in complex conjugate pairs. 

The propagator A is defined as the matrix inverse to A-‘. This is correct for 

physical values of d, 0 5 d 5 13, and at least a unique prescription when d > 13. 

In terms of components, 

A(&x) = 2D.K’ , 
,=1 

(B.lla) 

From the equations 

A(p, A’*) = i (D6 6”” + D, y$) , 

ACAP) = De 

(BSlb) 

(B.llc) 

%P) A-‘(AP) + A(p,X) A-‘(X,p) = 1 , 

A(P,P)A-‘(P,$ +A(p,X)A-‘(X,X) =o, 

ACAP) A-~(P,P) + A(&X = 0, 

follow five relations: 

(B.12a) 

(B.12b) 

(B.12~) 

PJ5 + JdDs + (Js + Js)D, + J,D8 = 1 , (B.13a) 

(451 + Js)Ds + (51 + Js)D, - JsDs = 0, 

(4Jz + 253 + Jd)De + (251 + 4J2 + J3 + J*)D, - J& = 0, 

2JsQ + (255 + Js)Dz + (Js + J6)D1 - J,D6 = 0, 

2J& + 4(J5 + Je)Ds + (2J5 + J6)D4 + (Js + JG)D5 - J7D7 = o 

(B.136) 

(B.13~) 

(BS3d) 

(B.13e) 

Eq. (B.13a) follows from eq. (B.12a); eqs. (B.12b) and (B.12~) each contain two 

channels, and produce eqs. (B.13b) - (B.13e). The equation 

A(&‘(p,X) +A(X,X)A-‘(X:X) = +I, (8.14) 
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produces Sk relations, for the channels K1, K*, K3, K4+, K4-: and ~5, In order, 

these are: 

JID1 = ; , (B.15~) 

~JIDI + (451 + Js)Dz - (J1 + J3)D4 - JjD6 = o, (B.156) 

JzD, + (5, + Jz)Dz = 0, (B.15~) 

2JA + 4(J1 + Jz)Ds + (451 t J3)D4 + (J1 - J3)Ds + J5D7 = 0, (B.l5d) 

2J.4 + (4Jz + 253 + J4)Dz + (2JI + 45, + J3 + J,)D4 + JsDG = 0 , (B.15e) 

2J,D1 - 4c2.b + 53 + J,)D3 i (452 - 2J3 + J4)D4 

+(2J, f 452 + 53 + J,)Ds 7 J6D, = o (B-f) 

The same relations follow if the transpose of eq. (B.15) is comput,ed. 

Eqs. (B.13) and (B.15) represent a set of eleven equations for eight unknowns, 

This overdetermined system has the unique solution: 

(B.16a) 

D*=-Dlo 
25109 ’ 

D3 zz - J2 
4Jl(J, + Jz) ’ 

Dll 
Dr=-, 

2JlDs 

D5 = - (J1 ,“t;;)D, ’ 

Db=$, 

0,=-g!, 

D,=$ 

where I have introduced the functions 

(B.166) 

(B.16c) 

(B.16d) 

(B.16e) 

(B.16f) 

(B-g) 

(B.16h) 

D: = SJ: + 125152 +4J1J3 + 3J1J., - J,” , (B.17a) 
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D:o = ZJ: + 4J1J2 + J,J4 - J,” , 

D:r = 4JtJz - 2J,J3 + J1J4 - J,’ , 

D:z = -25154 +4J,z +4J2J3 + J,J, + J,’ , 

(B.176) 

(B.17~) 

(B.17d) 

and 

09=(45,+4J~+Jd)J52+2(2J~-J3)J5Js+3J1J;+D;J,, 

Dl,, = (2J,+4J2+ J1)J,’ -2J3J5J6+ J,J,‘+D&J,, 

DII = (4Jz T Jd)J,2 - 2(J1 + J3)JsJ6 + JlJ,2 + D;,J, , 

0,~ = J,J,2 - 2(2J~ + J3)JsJs+2(2J1 - Jz)J,2 - D;2J7, 

013 = (2J1 + 452 I 53 + J,)Js - (51 + J3)Je , 

014 = (452 + 253 + Jd)Js - (451 + J3)J6 

(B.lSa) 

(B.18b) 

(B.18~) 

(BSBd) 

(B.18e) 

Wgf) 

This solution can be checked against the known results for flat surfaces. If by 

hand I set Js and J6 to zero, the p and X fields decouple, so that A(x, X) should 

be that for flat surfaces. With Js = Js = 0, eqs. (B.15) reduce to eqs. (4.21) of 

ref. (19). A(x,x) has the same form as in eqs. (B.16a) - (B.16e) (eqs. (4.22) 

of ref. (19)), if the functions D9 -+ Dis are replaced by Db + Di2, eqs. (B.l7), 

respectively. The functions 0: -i 013 appeared before, in eqs. (4.22) of ref. (19), 

under a different name. In this limit, the other D’s collapse to Ds = D, = 0, 

Ds = 1/J,. 

Besides the individual components of the propagator, the two point function for 

the trace of Xi” is also of interest. This is given by 

A(X,X:) = ~5”~ (@J&d) cd 

II 

J1(J, : J~)D~ (J1 (O9 -DI*) + ~(JI + Jz) (-Dm + Dll)) , (B.lga) 

= & (J,2 + (4 (J, + Jz) + 54) 5,) (B.19b) 
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For flat surfaces, A(xi,xi) is given by replacing Dg + Dl* with 0; + Di2 in 

eq. (B.19a). I checked numerically that for flat surfaces, A(xi, Xi) is positive over 

all P. 

In studying the behavior of the propagator, it is most convienient to study the 

functions of eq. (B.18). About zero momentum, 

DgC-- 4pg - (15La - 29) & T , 

P P* 
D,,,z-- - 

192 + 240 + “’ ’ 

Dll 
P* 

= xi+... ’ 

DIZ = O(P3) , 

013 = - (3OLo - 23) &O + , 

D14 z -- pz - (5Lo - 7) gO + , 

D;o;-;+... , 

up to terms which are smaller by powers of P. 

At large momentum, P > 1, 

(B.204 

(B.20b) 

(B.20~) 

(B.20d) 

(B.20e) 

(B-f) 

P.2’%) 

(B.21~) 

(B.216) 

(B.21~) 

(B.21d) 

(B.21e) 

(B.=f) 
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up to terms - l/P, and 

D: -- (3Lo - 1) & - , (B.W) 

up to terms - l/P3 
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Appendix C: An example of instability 

In this appendix I give a simple example which illustrates the nature of the 

instability at short distances when d ~> 13. This is done in part to counter David 

and Guitter,” who assert there is no such instability; K1einert7-b has followed their 

lead. The discussion does clarify some of the basic points, without the confusing 

complexity presented by the full problem. 

Instead of treating all three components of X”“, I replace them with a single 

field, X1; the pq field is represented by pt. For the purposes of discussion, it is not 

necessary to consider the complete functional integral. but only the integral over 

fields with a given (large) momentum. This is modeled by 

where the action St is 

Z, = /z dp, /_+_m dXt e?’ , 

s,=;b% A*)(; :“) (1:) . 

cc.11 

(C.2) 

I choose a, b, and c to behave like the corresponding components of A-’ at large 

P, eqs. (B.7): 

a = A;‘(~t,pt) = 
‘n(P) ; + 1 , b = -iA;‘(p,,X,) = +2 , 

WY c = A;‘(&,&) = +4p. 

Like eq. (2.5), the integration in eq. (C.1) is over real values of pi and Xt. Since the 

constraint of eq. (2.3) brings in an explicit factor of i, the off-diagonal components 

in A;‘, A;‘(pf, X,), are imaginary. 

The constants b and c are positive; a represents the Liouville mode at short 

distances, and is positive for d 5 13, and negative when d > 13. If A;’ were 

purely real, then its determinant would be negative if a were. Because the off- 

diagonal elements of A;’ are imaginary, though, the determinant of A;’ is positive, 

regardless of the sign of a: 

det (A;‘) = ac + bZ zz bZ , cc.41 

since while Ial>> b > c at large P, bZ >lal e by a factor of In(P). As discussed 
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following eq. (4.3), this is similar to smooth strings? where the Liouville term does 

not dominate det (A-l) either. 

At large P, the eigenvalues of A;’ are, approximately, 

b2 
+a, +a. cc.51 

Up to corrections - b’/a, the eigenvector with eigenvalue a is along pl, while the 

eigenvector with eigenvalue b’/a is along Xt. 

Looking just at the determinant of A;‘, one can formally define the partition 

function Z, - I/& = l/b, which is real. The question is whether the integrals 

which lead to this result are well-defined. 

Everything is fine when d 5 13. Both a, c, and the eigenvalues of A;’ are all 

positive, so no matter how the integral is done, in what order, at each step every 

integral is finite, and produce Z, - l/b. 

The only contention concerns d > 13. Suppose that one first integrates over Xt 

by completing the square. Since c is positive, this integral is well-defined, so 

+C+ 
Zt - 5 -m &t ~ZP 

/ 

1 1 

-2” At(~t>~t)~~ 

Af(p,,pt) is the two-point function for pt, 

&(~t,~t) = 5 = ; 

Whatever the sign of a, At(pt,pt) is positive, so the integral in eq. (C.6) is well- 

defined, and gives Z, - l/b. For smooth strings, A(p,p), eq. (4.2), behaves like 

Ar(pl, pl): it is positive, and independent of d, at large P. 

For d > 13, however, the integrals are well-defined only if they are performed in 

this order. Any other order gives ill-defined integrals: since a < 0, it is not possible 

to integrate over X, first, while if one goes to the eigenvalues of A;‘, eq. (C.S), then 

as each eigenvalue is negative, Z, is a product of two infinite integrals. 

Consider what it would imply for the full functional integral if only one order of 

integration were allowed: to wit, integrating first over X”“, and only then over p.” 

To consider the effect of an infintesimal fluctuation in p at a point z on the world 
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sheet, p(z), it would be necessary to integrate over all fluctuations A”*(z’) - even 

if z’ is arbitrarily distant from z. 

I insist that if the functional integral makes sense, then it shouldn’t matter in 

what order the integrals are performed. This is only true if d 5 13. 

One difference with ref. (10) is that they do not introduce an explicit factor 

of i when they exponentiate the constraint, eq. (2.3). They use & = iX1, and 

integrate over purely imaginary values of &. In eq. (C.Z), a is unchanged, while 

b + -i 6 and c + -Z, for real 6 and C. The entire discussion can be repeated in this 

instance. For example, suppose the integral is done by going to the eigenvectors 

of A;‘. Integrating along real pt and imaginary x,, the integrals are finite only if 

the eigenvalue in the - pt direction, a, is positive, while that in the - & direction, 

-@/a, is negative. This again requires a > 0, or d 5 13. 

Moreover, this example indicates where the instability appears in correlation 

functions. Suppose that d > 13, so the Liouville action, A~l(pt,pt) - a, is negative. 

As an obvious consequence of inverting a two by two matrix, the negative sign of a 

shows up not in A,(pt,pt), but in the other diagonal element, 

W&k) = & = ; CC.81 
which is the two-point function of Xt. This is precisely what happens for A(xz, Xt) 

in smooth strings, eq. (4.3): the instability for d > 13 shows up not in correlations 

of p, but in those of of Xz. 

For the sake of comparison, I note the analogous results for the usual non-linear 

sigma model. The action for an O(N) iso-vector field o is 

S=&jd’z ((&~)~+iX(o~-l)) (C.9) 

Using the equations of motion for 0 and the constraint, X = +i (8a~)*.32 This is 

similar to smooth strings, where Xab - iTab, with Tab the stress-energy tensor of 

eq. (2.1). 

Integrating out the cs field produces an effective action that depends only on the 

constraint field X. Expanding about the stationary point X = -iXo + X,, Xa > 0, in 
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momentum space the two-point function for X, is: 

4x x; 
A(&&) = fF L,(P) 

FERMILAB-Pub-87123-T 

The function L.,(P) is given in eq. (B.2): and is positive for all P (P E $/A,). 

In the sigma model, there is a stationary point for both N = -cc and N = foe, 

with the two-point function of X, having t,he same sign as N. For smooth strings, 

at short distances the two-point function of Xz is negative at large d, eqs. (4.3) and 

(C.8). Consequently, the expansion of smooth strings about d = foe is similar to 

the expansion of the O(S) model around N = --1x1. For the O(N) model, stability 

is recovered by going to N = +co; smooth strings are unstable for either sign of 

d.15 

Obviously, these instabilities did not deter me from plowing ahead and com- 

puting at large d anyway, as David and Guitter is did. The only difference is that 

I insist that the computations be undertaken with apology, and treated with due 

circumspection. Even so, I believe that our results, in this unstable limit of large d, 

can be used to understand at least some properties of smooth strings over physical 

values of d. 
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The results of eqs. (3.19) and (3.20) can be deduced from eq. (2.11) of 

Bernard and Duncan, ref. (26). 

In ref. (15)) I worked at II,., = 0, instead of the perturbative regime. Since 

I worked only at short distances, however, the only change is that the m* 

of ref. (15) should be replaced by its perturbative value, m* = o,c,&,,, eq. 

(2.18). I also note that while the Liouville action at short distances vanishes 

at d = 13, the non-leading term - 1 in A-~(P,P), eq. (B.7g), also derives from 

regularization of the massive mode, eq. (3.12). For this reason, A-‘(p,p) can 

be trusted to conclude that smooth strings are stable, over short distances, 

when d = 13. 

As for smooth strings, the vacuum expectation value of this composite oper- 

ator is real: ((19.o)‘) = -X0. Consider the two-point function, 

((W’(4 (&4’(O)) = -(X(z) NO)) = +A: - (&(z)&(O)) 

By writing down the dominant diagrams at large N and summing them up, 

it is possible to show that the connected piece of this two point function does 

contribute with a negative sign; i.e.. that the two point function of X,, eq. 

(C.lO), is positive. 


